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ABSTRACT

We demonstrate that machine learning (ML) can skillfully classify thunderstorms into three categories:

supercell, part of a quasi-linear convective system, or disorganized. These classifications are based on radar

data and environmental information obtained through a proximity sounding.We compare the performance of

five ML algorithms: logistic regression with the elastic-net penalty, random forests, gradient-boosted forests,

and support-vector machines with both a linear and nonlinear kernel. The gradient-boosted forest performs

best, with an accuracy of 0.77 6 0.02 and a Peirce score of 0.58 6 0.04. The linear support-vector machine

performs second best, with values of 0.70 6 0.02 and 0.55 6 0.05, respectively. We use two interpretation

methods, permutation importance and sequential forward selection, to determine the most important pre-

dictors for theMLmodels. We also use partial-dependence plots to determine how these predictors influence

the outcome.Amain conclusion is that shape predictors, based on the outline of the storm, appear to be highly

important across ML models. The training data, a storm-centered radar scan and modeled proximity

sounding, are similar to real-time data. Thus, the models could be used operationally to aid human decision-

making by reducing the cognitive load involved in manual storm-mode identification. Also, they could be run

on historical data to perform climatological analyses, which could be valuable to both the research and op-

erational communities.

1. Introduction

Storm-mode classification is an important task for

both real-time weather forecasting and climatological

analysis. As the National Weather Service builds next-

generation forecast systems that make use of automated

technology [e.g., probabilistic hazard information, dis-

cussed inGallo et al. (2017) andRothfusz et al. (2018)], a

real time system that classifies storm-mode can help

guide automated warnings, since storm-mode is corre-

lated with hazards such as hail and tornadoes (Smith

et al. 2012; Thompson et al. 2012). In addition, accurate

and automated storm-mode classification would allow for

long-term climatologies. These climatologies could an-

swer questions such as ‘‘how often do supercells occur at

my location?’’ or ‘‘what is the most common convective

mode at my location?’’ These questions could also be

broken downby timeof day, time of year, synoptic régime,

etc. Furthermore, we could study trends in convective

mode as a function of climate change or internal climate

variability (e.g., the El Niño–Southern Oscillation).

The existence of different convective modes has been

known for decades. Byers (1949) describes the life cycle

of a single-cell thunderstorm and its structure and dy-

namics during each stage. This conceptual model has

three stages: the cumulus stage, in which the updraft is

shallow but deepening and there is no downdraft; the

mature stage, in which the updraft is at maximum

depth (often up to the tropopause) and is adjacent
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to a well-developed downdraft; and the dissipating stage,

in which the downdraft comes to dominate the low levels

and chokes off the low-level inflow to the updraft, thus

extinguishing the storm. This life cycle typically lasts

30–60min (Wallace and Hobbs 2006, their section 8.3.2a).

InByers’s conceptualmodel the single cell does not interact

with other cells, except that its cold outflowmay trigger the

development of new cells. However, Byers acknowledges

the existence of multicellular storms. Single-cell storms of

the Byers type are usually not associated with severe

weather (Wallace and Hobbs 2006, their section 8.3.2a).

Quasi-linear convective systems (QLCS) are a type of

mesoscale convective system (Houze 2004). The stron-

gest updrafts (storm cells) form a line or arc and are

often adjacent to a large region of stratiform precipita-

tion. The classical structure of a QLCS is leading line–

trailing stratiform, in which the stratiform precipitation

is behind the leading line (Houze and Hobbs 1982).

QLCSs often begin with a single cell, which in its dissi-

pating stage produces a downburst that propagates away

as a gust front, along which new cells initiate (Johns 1993).

The new cells may undergo the same process, producing

an even longer gust front, until the systemgrows to lengths

on the order of 100–1000km. Rising air at the leading line

propagates toward the back of the system, forming a

mesoscale region of ascending front-to-rear flow. This is

balanced by descending rear-to-front flow, which may

form a rear-inflow jet, descending to the surface near the

leading line and strengthening the gust front, which allows

the system to persist. QLCSs usually last 6–12h (Parker

and Johnson 2000) and sometimes evolve into bow echoes

or derechoes, which can produce extreme surface winds

(Coniglio et al. 2004). QLCSs sometimes produce torna-

does, but these tornadoes tend to be weaker than their

supercellular counterparts (Thompson et al. 2012).

Supercells are storms with a strong updraft and

collocated mesocyclone (Lemon and Doswell 1979),

which is a vortex with diameter and depth from a few

kilometers to 10 km (Stumpf et al. 1998). The forma-

tion of a mesocyclone depends on strong vertical

wind shear in the prestorm environment (Lemon and

Doswell 1979). Wind shear also creates an upward-

directed perturbation pressure-gradient force, which

strengthens the updraft, and shear carries hydrome-

teors away from the updraft as they move aloft. This

latter effect allows horizontal separation between the

updraft and precipitation-loaded downdraft, which

prevents the downdraft from extinguishing the updraft

and allows the storm to persist for several hours.

Supercells typicallymove to the right of the environmental

steering wind in the Northern Hemisphere, as a result of

continual regeneration of the updraft on its right flank and

dissipation on its left flank (Davies-Jones 2002). Supercells

are responsible for a majority of tornadoes and a large

majority of violent tornadoes and often produce other

types of severe weather, including straight-line wind and

hail (Thompson et al. 2012).

Despite decades of research on different convective

modes, few objective classification schemes existed be-

fore the installation of the Next-Generation Radar sys-

tem (NEXRAD; Crum and Alberty 1993), completed

in the mid-1990s. Fowle and Roebber (2003) classify

storms as linear, multicellular, or isolated (single cell). A

‘‘linear’’ storm is one with a high-reflectivity area (radar

reflectivity .40 dBZ) covering at least 500 km2, per-

sisting for at least 3 h, and with a length-to-width ratio of

at least 3. A ‘‘multicellular’’ storm is one that meets all

these criteria except the length-to-width ratio, and an

‘‘isolated’’ storm is a high-reflectivity area covering less

than 500km2. Meanwhile, Trapp et al. (2005) classify

storms as a cell, QLCS, or other. In their scheme a ‘‘cell’’

is a circular or elliptical region of nonzero reflectivity

with maxima typically $50 dBZ, whereas a QLCS

is a quasi-linear region of reflectivity $40 dBZ with

length .100 km. Their ‘‘other’’ category mostly con-

tains tornadic outer rainbands of tropical cyclones that

have made landfall. Many studies have focused only on

the classification of QLCSs. For example, Bluestein

and Jain (1985) classify QLCSs into four types: broken

line, back building, broken areal, and embedded areal

(their Fig. 1). Meanwhile, Parker and Johnson (2000)

classify QLCSs into those with trailing, leading, and

parallel stratiform precipitation (their Fig. 4) while

acknowledging that some QLCSs have no stratiform

precipitation. Gallus et al. (2008) build on these works

and classify storms into nine types: isolated cells, clusters

of cells, nonlinear systems, and six types of QLCS (their

Fig. 2). Last, objective supercell-detection schemes have

generally used a threshold on the linear correlation be-

tween vertical velocity and vertical vorticity (Clark 1979;

Weisman and Klemp 1984; Knupp et al. 1998) or on the

updraft helicity (Kain et al. 2008; Sobash et al. 2011).

Smith et al. (2012, hereinafter S12) developed a

classification scheme that contains five major cate-

gories: supercell, part of a QLCS, disorganized, linear

hybrid, and marginal supercell. ‘‘Disorganized’’ storms

are single cells and multicellular clusters that do not

clearly achieve supercell or QLCS criteria; ‘‘linear

hybrids’’ are right-moving supercells embedded in a

QLCS; and ‘‘marginal supercells’’ are those with wind

shear ,20ms21 from 0 to 6km above ground level

(Thompson et al. 2003). As noted in S12, this scheme can

be simplified to three categories: supercells, QLCS, and

other, as in Trapp et al. (2005) but with two differences.

First, S12 use a reflectivity threshold of 35 dBZ for

all storms; second, their ‘‘other’’ category contains all
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disorganized single cells and clusters, not only rainbands

in tropical cyclones. In general, each storm identified by

S12 contains a single dominant updraft. This study

adopts the simplified three-category scheme.

S12 classify only storms associated with a tornado,

significant-severe hail (diameter $2 in. or 50.8mm), or

significant-severe wind gust ($65 kt or 33.4m s21).

Henceforth, we will refer to these as ‘‘significant-severe

storms.’’ Their dataset totals 22901 storms from the years

2004–11 (Fig. 1), and all storms are classified manually.

They note that, of the five major categories, linear hy-

brids and marginal supercells are the most difficult to

identify, with some potential linear hybrids requiring

multiple examinations by outside experts. In a personal

communication with the authors, they estimate that it

took the equivalent of 3.5 years of a person working full

time to create these data. S12 note that, had they used

severe thresholds (25.4mm and 25.7ms21) rather than

significant-severe thresholds, there would have been

enough storms to make the cost of labeling prohibitive.

These difficulties highlight the benefits of machine

learning (ML), which can achieve human-level accuracy

in image classification in a small fraction of the time

(Quartz 2017). The success of ML-based image classifi-

cation in meteorology has been less dramatic, likely

because definitions of meteorological phenomena (e.g.,

linear hybrids) are less objective. Nonetheless, it has

achieved notable successes in meteorology as well. For

example, Wang et al. (2016) use ML to detect sea ice

concentration in satellite imagery; Liu et al. (2016), to

detect extreme-weather patterns in climate-model output;

Chilson et al. (2019), to detect bird roosts in radar imag-

ery; Lagerquist et al. (2019), to detect warm and cold

fronts in reanalysis data; and Wimmers et al. (2019), to

classify tropical-cyclone intensity from satellite imagery.

Although this paper focuses specifically on the appli-

cation of ML to storm-mode classification, it also con-

tributes to a larger body of work on implementing and

evaluating ML techniques to improve weather fore-

casting in amanner that is not focused on postprocessing

model output. With this paper, we also hope to raise

awareness of the potential for similar ML models to be

trained on many forms of data (such as in situ observa-

tions, remote sensing, and numerical weather prediction

output), applied to a wide array of meteorological tasks,

and used as components of larger systems, such as the

Warn-On-Forecast system (WoF; Stensrud et al. 2009;

Lawson et al. 2018; Skinner et al. 2018). This work builds

onGagne et al. (2009) in which we demonstrated that an

automated storm classification system could use single

decision trees to classify hand-labeled storms.

2. Data

We use two datasets to create predictors for storm

mode: the Multiyear Reanalysis of Remotely Sensed

Storms (MYRORSS; Ortega et al. 2012) and the

Rapid Update Cycle numerical weather model (RUC;

Benjamin et al. 2004, 2016). MYRORSS is used to

identify storm cells and extract within-storm radar

statistics, while the RUC is used to create a proximity

sounding, representing the near-storm environment.

MYRORSS is an archive of quality-controlled, com-

posited data from all NEXRAD radars in the con-

tinental United States (CONUS). Quality control and

compositing is done by the Warning Decision Support

FIG. 1. Spatial distribution of storm objects with each convective mode in the dataset (2004–11).
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Systemwith Integrated Information (WDSS-II;Lakshmanan

et al. 2007), a software package for the analysis and vi-

sualization of radar data. MYRORSS includes 12 vari-

ables (Table 1, Figs. 3–5, described inmore detail below)

on a CONUS-wide grid at 5-min time steps. The velocity-

derived fields (azimuthal shear) are on a 0.0058 latitude–
longitude grid, and the reflectivity-derived fields (all

others) are on a 0.018 grid. The RUC is a nonhydrostatic

mesoscale model with a 13- or 20-km grid covering the

full CONUS, 50 vertical levels, and a 30-s time step. The

model is run hourly, and output is available at 1-h time

steps and 37 pressure levels equally spaced from 1000 to

100hPa. The RUC (and its modern successor, the Rapid

Refresh) have been used extensively to study thunder-

storm environments, including in the Storm Prediction

Center’s mesoanalysis (Storm Prediction Center 2019).

Storm cells (e.g., outlines in Figs. 2–5) are identified in

MYRORSSbyanalgorithmcalled segmotion (Lakshmanan

and Smith 2010), which is also part of WDSS-II.

Identification is done independently at each 5-min

time step, using the extended-watershed algorithm

(Lakshmanan et al. 2009). This algorithm identifies

local maxima in column-maximum reflectivity of at

least 40 dBZ, then grows these point maxima into

polygons with two minimum sizes: 40 km2 (small scale)

and 200 km2 (large scale). The polygons are tracked

over time, independently at each scale, using a vari-

ant of the K-means clustering algorithm. The two

scales are then merged: for each large-scale polygon L

containing exactly one small-scale polygon S (it may

contain all or part of S), S is replaced with L. All other

large-scale polygons are thrown out. Each remaining

polygon is considered to be a storm object (one storm

cell at one time step), andmost polygons contain only a

single dominant updraft, making our definition of a

storm cell consistent with S12. See Fig. 2 for an ex-

ample of segmotion-detected storm objects at one time

step. All segmotion settings described in this para-

graph, including the scale merger, are used in the quasi-

operational ProbSevere system (Cintineo et al. 2014, 2018).

We create four types of predictors for each storm object:

radar predictors, shape predictors, storm motion, and

sounding predictors. First, we compute 10 statistics for each

of 12 radar variables (Table 1, Figs. 3–5), using only

MYRORSS grid cells inside the storm object. This results

in 120 radar predictors. Second, we compute nine shape

predictors from the polygon defining the storm outline:

area, perimeter, eccentricity, orientation, solidity, extent,

mean absolute curvature, bending energy, and compact-

ness. Eccentricity and orientation are based on the ellipse

with the same second moments as the storm outline.

Solidity is the number of grid cells in the storm/the number

of grid cells in the convex hull; extent is the number of grid

cells in the storm/the number of grid cells in the bounding

box; mean absolute curvature is a mean over all vertices;

bending energy is the sumof squared curvatures/perimeter;

compactness is perimeter2/(4p 3 area). Solidity, extent,

and bending energy can be viewed as measures of how ir-

regular the shape is; solidity and extent decrease, while

bending energy increases, as the shape becomes more

irregular. Third, we extract storm motion from the seg-

motion file, which uses a finite-difference estimate.

Storm motion is a vector and is decomposed in two

ways—into x and y components and into magnitude,

sine, and cosine—resulting in five predictors.

Fourth, sounding predictors are based on the prox-

imity sounding, taken from the RUC. No temporal or

spatial interpolation is done: we take the sounding

from the1 nearest grid cell to the storm center at the

latest RUC analysis before t 2 30min, where t is the

valid time of the storm object. The 30-min offset

generally prevents convective contamination of the

sounding. Nearest-neighbor interpolation preserves

physical consistency among the sounding variables

(vertical profiles of temperature, humidity, wind veloc-

ity, and geopotential height), which more complicated

interpolationmethods, such as linear or cubic, would not

necessarily do. Sounding predictors are computed with

the SHARPpy software package (Blumberg et al. 2017).

TABLE 1. Radar predictors. Each statistic is computed for each

variable, using all grid cells inside the storm object, resulting in

120 predictors.MESH andVIL are in units ofmillimeters, azimuthal

shear is in inverse seconds1, reflectivity is in reflectivity decibels

(dBZ); and echo top is in kilometers above sea level. SHI is

unitless.

Variables Spatial statistics

Low-level azimuthal shear [max from 0 to

2 km above ground level (AGL)]

Min

Midlevel azimuthal shear (max from 3 to

6 km AGL)

5th percentile

18-dBZ echo top 25th percentile

40-dBZ echo top Median

Max estimated hail size (MESH) 75th percentile

2208C reflectivity 95th percentile

2108C reflectivity Max

08C reflectivity Mean

Column-max (composite) reflectivity Std dev

Lowest-altitude reflectivity Skewness

Severe-hail index (SHI)

Vertically integrated liquid (VIL)

1 The RUC is run every hour, and we use a fallback plan to

handle missing data. If the 13-km grid is available at the most re-

cent hour, we use the 13-km grid. Otherwise, if the 20-km grid is

available, we use the 20-km grid. Otherwise, we leave sounding

predictors empty for the given storm object.
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Predictors that depend on actual storm motion are com-

puted with the segmotion estimate, rather than sounding-

inferred storm motion. Predictors such as storm-relative

helicity are computed with right-mover/left-mover mo-

tion inferred from the sounding. Vectors output by

SHARPpy are decomposed into five predictors each, as

described in the above paragraph. The result is 207

sounding predictors, a complete list of which can be

found in Table A1 of Lagerquist et al. (2017). In broad

terms, sounding predictors include wind shear over dif-

ferent layers; mean wind velocity over different layers;

mean storm-relative wind velocity over different layers;

thermodynamic indices such as lapse rate, lifted index,

and convective available potential energy over different

layers; and other indices, such as the supercell com-

posite parameter, significant-tornado parameter, wind-

damage parameter, and others. Altogether, there are

341 predictors. Several example distributions for the

ranges of the input predictors are shown in Fig. 6.

Our labels come from two datasets: S12 and H.

Obermeier (2016, personal communication). As noted

in section 1, S12 contains only significant-severe storms.

Obermeier uses the same classification scheme as S12,

but the Obermeier dataset contains both severe and

nonsevere (mostly nonsevere) storms in the central

United States2 from April to December 2011. Because

of the greater subjectivity in identifying linear hybrids

and marginal supercells and their much smaller count of

labeled storms, we relabel these storms as QLCS and

supercell, respectively. This leaves three categories: su-

percell, QLCS, and disorganized.

To create target values for ML, we link these labels to

storm objects created by segmotion. The ‘‘target value’’ is

the correct answer (supercell, QLCS, or disorganized)

provided to ML models during training. We link each

label to the nearest storm object s* within 20km: the label

must be inside the polygon or within 20km of the nearest

edge. If there is no storm object within 20km, we throw

the label out. We also assume that each label is valid for

10min before and after its time stamp, sowe link the label

to all storm snapshots of s* within 10min. This 10-min

offset allows the number of labeled storm objects to ex-

ceed the number of original labels. The final result is

77402 objects labeled as supercells, 20991 labeled as QLCS,

and 24994 labeled as disorganized (Fig. 1). Each storm ob-

ject is considered to be a separate data point (example) for

the ML models. The distribution shown in Fig. 1 does not

reflect the true climatology, because most labels come from

S12, which contains only significant-severe storms.

In this study we consider four subsets of the predictor

variables: full (all 341), no azimuthal shear (‘‘no-az-shear’’;

leaving 321 predictors), no sounding (leaving 129), and no

azimuthal shear or sounding (‘‘limited’’; leaving 109).

Azimuthal shear is omitted because it takes more time

to process in MYRORSS than the reflectivity-based var-

iables.Also, the quality of azimuthal shear decreasesmore

quickly with distance from the nearest radar than does

FIG. 2. Storm objects identified by the segmotion algorithm for one time step. Storm objects

are outlined in black, and six of these storm objects have been labeled in the human dataset (all

marked ‘‘S’’ for supercell).

2 States include Texas, Oklahoma, Kansas, Nebraska, South

Dakota, Louisiana, Arkansas, Missouri, Iowa, Minnesota, Illinois,

and Wisconsin.
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reflectivity, so high-quality azimuthal shear is avail-

able for fewer storms. Sounding predictors are omit-

ted because they take a long time to compute: once

MYRORSS data have been processed, it takes milli-

seconds per storm object to compute radar predictors

but ;1 s for sounding predictors. Thus, if we find that

ML models perform equally well without one or more

predictor types, an operational system could ignore

them and perform just as well, with fewer computa-

tional resources required.

We hypothesize that removing any subset of pre-

dictors will be detrimental to model performance and

that removing azimuthal shear will be most impactful.

Although high-quality azimuthal shear is not always

available, it is generally a good indicator of supercells

(high values in the mesocyclone), which dominate the

dataset. If we were predicting future storm mode,

sounding predictors might be more important, since

they represent the near-storm environment, which

largely determines the storm’s evolution. However, our

task is to classify storms at the present time, for which

radar data should be more useful.

We apply five more transformations to the dataset,

listed below.

FIG. 3. Examples of the 12 MYRORSS variables for a randomly selected supercell.
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1) We remove examples with .100 missing predictors.

Thismostly removes examples withmissing sounding

data, which occur because the latest hourly RUCwas

unavailable.

2) We set any missing predictors left to 2999. This is

necessary because we use the scikit-learn (Pedregosa

et al. 2011) implementation for all MLmodels, which

cannot handle missing values.

3) We create eight training/testing splits. In the kth

split, the test set is year 2003 1 k and the training

set is all other years. Splitting by year eliminates

temporal autocorrelation between the training and

testing sets, which ensures that they are statisti-

cally independent. Each ML model is trained eight

times, once for each split, so that testing results can

be reported for the entire dataset.

4) For each training/testing split, we normalize each

predictor variable using Eq. (1). Variable xij is the

unnormalized value of the jth predictor for the ith

example; x0ij is the normalized value; ~xj is the median

of the jth predictor; p75,j is the 75th percentile; and

p25,j is the 25th percentile:

FIG. 4. Examples of the 12 MYRORSS variables for a randomly selected QLCS storm.
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x0ij 5
x
ij
2 ~x

j

p
75,j

2p
25,j

. (1)

Normalization parameters (~xj, p75,j, and p25,j) are

computed only on the training set and are used to

normalize both the training and testing sets. This

prevents the testing set from influencing the training

procedure so that it may provide an independent assess-

ment of the model’s performance. We use Eq. (1)

instead of the z score (the standard choice), because

the z-score equation involves mean and standard

deviation, rather than median and interquartile

range, which is p75,j 2 p25,j; the latter statistics are

more resistant to outliers. This is especially impor-

tant when the dataset uses 2999 for missing values.

5) For each split, the training set is balanced to make

the distribution 40% supercells, 30% QLCS, and

30% disorganized. When the distribution is heavily

unbalanced, ML models tend to learn useful relation-

ships only for the majority class and perform poorly

on the minority classes. Balancing is done by both

downsampling the majority class and upsampling the

FIG. 5. Examples of the 12 MYRORSS variables for a randomly selected disorganized storm.
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minority classes. Specifically, we randomly eliminate

supercell examples, and randomly duplicate QLCS

and disorganized examples, until the desired propor-

tions are reached. Only the training set is balanced;

the testing set comes from the actual data labels. This

is necessary for demonstrating results that could

work in the real world.

3. Machine-learning algorithms

This section briefly reviews the ML algorithms used.

We use the scikit-learn (Pedregosa et al. 2011) im-

plementation of all algorithms.

a. Logistic regression

Linear regression uses a weighted sum of the predic-

tors, along with a bias weight, to predict a real number.

Logistic regression adapts linear regression to binary

classification by applying a sigmoid function to the

output. Equation (2) shows the resulting equation in

terms of the predictors xj and the learned weights bj.

Note that z is simply linear regression:

y5
exp(z)

11 exp(z)
, where z5b

0
1�

M

j51

b
j
x
j
. (2)

Logistic regression can be adapted for nonbinary (e.g.,

three class) classification in several ways. We use the

scikit-learn method SGDClassifier, which trains a dif-

ferent binary classifier [version of Eq. (2)] for each class.

During training, the weights are adjusted to minimize

the cross-entropy between the predictions and true

values under two additional regularizations. The L1

(‘‘lasso’’) penalty encourages the model to produce

FIG. 6. Distributions of four predictor variables: (left) maximum MESH inside the storm, (left center) magnitude of wind shear from

lifting condensation level to equilibrium level (LCL to EL), (right center) surface relative humidity, and (right) severe hazards in envi-

ronments with reduced buoyancy (SHERB). For each predictor, a logarithmic frequency plot is shown for each class, as well as (bottom) a

nonlogarithmic plot that compares the distributions across the three classes. The number of storm objects with missing values is included

below each plot.
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weights of exactly zero by penalizing the sum of absolute

values of the weights (Tibshirani 1996), and the L2

(‘‘ridge’’) penalty encourages the remaining weights to

be very small by penalizing the sum of squared weights

(Hoerl and Kennard 1988). Equation (3) shows the re-

sulting loss function (penalized cross-entropy), where

the first sum is the cross-entropy between the predic-

tions ŷi and true values yi; the second sum is the L1

penalty; the final sum is the L2 penalty; and l1 and l2
are the strengths of the respective penalties, which we

choose using cross validation:

P52
1
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Applying both L1 and L2 penalties is called elastic-

net regularization (Zou and Hastie 2005). Linear

regression and variants thereof have been used in

meteorology for decades (e.g., Kohler 1949; Malone

1955). Recent successes—the first two of which use

elastic-net regularization—include predicting solar

radiation (Aggarwal and Saini 2014), pollutant con-

centration (Suleiman et al. 2016), and convective

initiation (Mecikalski et al. 2015).

b. Random and gradient-boosted forests

A decision tree consists of both branch nodes and leaf

nodes (Quinlan 1986). Each branch node poses a yes-or-

no question for one predictor (e.g., ‘‘is the reflectivity at

least 65 dBZ?’’), deciding whether the example is sent

down the right or left branch. Leaf node n predicts the

probability of each class, based on the examples in the

training set that reached n. An example of the first few

questions asked by a decision tree is shown in Fig. 7.

See Fig. 1 of McGovern et al. (2017) for an illustration

of a complete tree.

The main disadvantage of decision trees is that

they learn precise thresholds, which easily overfit

the training data. This problem can be mitigated

by ensembling many trees into a random forest or

gradient-boosted forest (GBF). In a random forest

(Breiman 2001), each tree is trained with a boot-

strapped replicate of the training examples and each

branch node is allowed to choose from only a small

subset of the predictors. A bootstrapped replicate of

N examples still contains N examples, but they are

resampled with replacement from the original data-

set, yielding approximately 63.2% of the unique

examples on average (Efron 1979). Bootstrapping

and predictor-subsetting ensure diversity among the

trees, so while the individuals overfit, their biases

often cancel out when ensembled. To make predic-

tions from a random forest, the individual trees’

predictions are averaged.

In a GBF (Friedman 2002) the first tree is trained as

usual. However, all other trees are iteratively trained to

predict the error of the previous trees, emphasizing diffi-

cult examples more heavily. This encourages each tree to

learn from the mistakes of previous trees. Also, the target

variable for each tree after the first is an intricate function

of the predictors and label, rather than the label itself,

which allows GBFs to learn more complicated func-

tions than random forests. In practice, GBFs gener-

ally make better predictions than random forests.

However, GBFs are more computationally expensive,

because the trees must be trained in series, whereas

those in a random forest can be trained in parallel.

Random forests and GBFs have been applied suc-

cessfully to predict convectively induced turbulence

FIG. 7. Diagram of the first few decisions in a single decision tree. As more questions are asked, the node contains predominantly more

examples of a single class. At the bottom leaf nodes, a prediction is made using the fraction of each class present at the leaf. This tree is one

of the trees in the GBF that was trained over the full predictor set and therefore contains seven total layers.
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(Williams 2014), tornadogenesis (McGovern et al. 2014),

solar radiation (McGovern et al. 2015), and damaging

straight-line wind (Lagerquist et al. 2017); and to identify

features such as drylines (Clark et al. 2015); and meso-

scale convective systems (Haberlie and Ashley 2018).

c. Support-vector machines

Linear support-vector machines (SVM) were first

developed by Vapnik (1963) for binary classification.

Linear SVMs work by finding a hyperplane in the pre-

dictor space that best separates the two classes (i.e., most

examples in class A are on one side of the hyperplane,

while most examples in class B are on the other side).

Schematics for a 2D predictor space are shown in Fig. 8.

SVMs cannot be so easily visualized in our predictor

space, which is anywhere from 109-D (the limited pre-

dictor set) to 341-D (full predictor set). The SVM also

learns to maximize the ‘‘margin’’—average Euclidean

distance between the hyperplane and a correctly classi-

fied example. This is shownmost clearly in the top left of

Fig. 8: the line could be moved toward the bottom-right

or top-left and still obtain 100% accuracy on the data

shown, but maximizing the margin generally makes the

SVM a better predictor for new data (which may fall

outside of the two clusters shown).

Since most real-world data are not linearly separable,

nonlinear kernels (Cortes and Vapnik 1995; Vapnik

1995) are often used to implicitly transform the predictor

space. The linear kernel (whichmay be considered as ‘‘no

kernel’’) is defined in Eq. (4). Both x and w are predictor

vectors for two examples, both of length M, where M is

the number of predictors; x � w is the dot product (x1w11
x2w2 1 . . . 1 xMwM); and c is a regularization term. The

c is a hyperparameter, which encourages the model to

overfit when too small and underfit when too large:

K
linear

5 x � w1 c . (4)

For nonlinear SVMs in this study, we use the Gaussian

kernel [Eq. (5)]. Here jjx 2 wjj is the magnitude

(Euclidean norm) of the difference between the two

vectors, and s (another hyperparameter) is the decay

rate. As with c, small values of s lead to overfitting and

large values of s lead to underfitting:

K
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5 exp
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#
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SVMs can be adapted for nonbinary classification in

the same way as logistic regression (section 3a): by

training one model for each class k, which discriminates

FIG. 8. SVMs used to separate synthetic data into two classes; the predictors are (top)

variables 1 and 2, (bottom left) x and y, and (bottom right) r and u. True classes are repre-

sented by yellow and gray dots; predicted classes are represented by beige and black regions.

In the top-left diagram, a linear SVM is used to classify linearly separable data; in the top-

right diagram, a linear SVM is used to classify non–linearly separable data; in the bottom-left

diagram, a quadratic SVM is used to classify non–linearly separable data; the bottom-right

diagram is the same as the bottom-left one but is in the space implicitly defined by the SVM’s

quadratic kernel.
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between k and all other classes (the one-vs-all ap-

proach). Although less popular in meteorology than the

other ML algorithms discussed, SVMs have been used

successfully to predict temperature (Radhika and Shashi

2009) and tornadoes (Trafalis et al. 2003; Adrianto

et al. 2009).

4. Model interpretation

We use multiple interpretation methods to under-

stand the relationships learned by ML models. For

decision trees and forests, the standard interpreta-

tion method is impurity importance (Louppe et al.

2013). However, this method works only for trees

and forests, and it overstates the importance of pre-

dictors that appear earlier in the tree (closer to

the root node), as explained in McGovern et al.

(2019). Instead, we use model-agnostic interpretation

methods, which can be applied to anyMLmodel. They

are described briefly in the following sections, and

more detailed descriptions are found in McGovern

et al. (2019).

a. Permutation importance

Permutation importance measures the importance

of each predictor xj by how much the model error

changes when statistical correlations between xj and

the target variable are broken. The model is first

trained on nonpermuted data and then importance

can be measured on either the training or testing set.

Shuffling the values for a single predictor across the

various observations breaks the statistical correla-

tion between xj and the target variable, so if xj is

important, error should increase. If error does not

increase, this is a sign that, at least for the given

model, xj is unimportant. There are two versions of

permutation importance: single-pass (Breiman 2001)

and multipass (Lakshmanan et al. 2015), both im-

plemented with parallelization in Jergensen (2019).

In the single-pass version, each predictor is shuffled

once and importance is calculated. In the multipass

version, the most important variable remains shuffled

while additional variables are shuffled. The multipass

and single-pass algorithms often give different answers,

especially when there is a linear correlation among the

predictors. This issue is discussed further in McGovern

et al. (2019).

b. Sequential selection

Sequential forward selection (SFS; Webb 2003, their

section 9.2.3) is another model-agnostic approach to

ranking predictor importance. The algorithm is outlined

below, and M is again the total number of predictors.

1) Train M models with one predictor each. Compute

the error of each one-predictor model on the testing

set. Keep the model with the lowest error and call

the newly added predictor x1*.

2) For each of the M 2 1 remaining predictors xj, train a

model with x1* and xj. Compute the error of each two-

predictormodel on the testing set. Keep themodelwith

the lowest error and call the newly added predictor x2*.

This process continues until a stopping criterion is met.

There are two key differences between permutation im-

portance and SFS. First, to evaluate model error without

xj, SFS removes xj from the model entirely, whereas

permutation importance shuffles xj randomly. Second,

SFS retrains the model for each predictor set, whereas

permutation importance uses a pretrained model. As a

result, whereas permutation importance indicates the

importance of a predictor to a particular model realiza-

tion, SFS indicates the importance of the predictor to the

model architecture. Both permutation importance and

SFS can be computationally expensive, because the first

computes model error 0.5M(M2 1) times and the second

retrains the model up to 0.5M(M 2 1) times. Retraining

themodel generally takesmuch longer, whichmakes SFS

much more expensive. However, in practice the stopping

criterion is usually reached early (after only a smallminority

of predictors has been added), which makes SFS tractable.

c. Partial-dependence plots

The above methods succinctly quantify the importance

of each predictor, but they do not indicate how it is im-

portant. This problem is partially addressed by partial-

dependence plots (PDP; Friedman 2001), which visualize

the average prediction as a function of each predictor xj.

Specifically, xj is fixed at a given value for all examples

(leaving the other predictors untouched); the fixed data-

set is passed through the model; and the resulting pre-

dictions are averaged over all examples. This process is

repeated for many values of xj, yielding a curve. Parts of

the curve with a nonzero slope indicate where the model

is sensitive to xj, and the sign (positive or negative) of the

slope indicates the direction of the relationship.

5. Results

This section summarizes the predictive performance

and interpretation of all five ML algorithms: logistic

regression with elastic-net regularization, random for-

est, GBF, and SVM with both linear and nonlinear

kernels. Performance results are based on all eight years,

2004–11, but using only the testing year from each

training/testing split (section 2). Interpretation results

are based on 2010, from the split where 2010 is the

testing year. Full interpretation methods could not be
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run on the full eight years, because the methods are

too computationally expensive. All models are im-

plemented in version 0.20 of scikit-learn (Pedregosa et al.

2011). Implementation details, including hyperparameters

(model settings such as penalty weights, number of trees

in the forest, etc.), are found in the appendix.

a. Evaluation scores

Our main skill score is the Peirce score (Peirce 1884),

which measures the improvement in accuracy over cli-

matological guessing. In climatological guessing, if class

k appears with frequency f in the training set, the pre-

dicted probability of class k is f for every example. We

also compute accuracy, the Heidke score (Heidke 1926),

which measures the improvement in accuracy over

random guessing, and the Gerrity score (Gerrity 1992),

which is similar to the Peirce and Heidke scores but

rewards correct predictions of the minority classes

(QLCS and disorganized) more than the majority class

(supercells). Accuracy ranges over [0, 1]; Heidke score

ranges over (2‘, 1]; and the Peirce and Gerrity scores

range over [21, 1]. Higher is better for all scores, and,

for all but accuracy, positive values indicate skill (an

improvement over the baseline).

b. Model performance

Figure 9 summarizes the performance of each model

on each predictor set. On all predictor sets the model

with the best performance (as measured by the Peirce

score) is the GBF, followed by the linear SVM, non-

linear SVM, random forest, and logistic regression. The

performance of the GBF and linear SVM (second-best

model) often differs by more than the standard devia-

tion over the eight training/testing splits, but in general

FIG. 9. Model scores on testing data. The numbers without parentheses are the mean, and those inside paren-

theses are the standard deviation over all eight training/testing splits. Lighter color indicates higher skill, as depicted

by the color bars next to each plot.

APRIL 2020 J ERGENSEN ET AL . 549

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:13 PM UTC



no other model pairs differ strongly. The superiority of

GBF over the SVMs suggests that the data are too

complex for the classes (supercell, QLCS, and disor-

ganized) to be separated by hyperplanes, even after

transforming the predictor space with a nonlinear

kernel. The superiority of GBF over the random forest

suggests that sequential training, where the kth tree

focuses on the most difficult examples for the first k2 1

trees, is important for this dataset.

For almost allmodels, the best performance is achieved

with the full predictor set, followed by no-az-shear

(missing 20 predictors), then no-sounding (missing

212 predictors), then limited (missing 232 predictors).

This supports our hypothesis that model performance

would decline whenever predictors are removed.

Differences between the top two predictor sets (full and

no-az-shear), as well as the differences between the

bottom two sets (no-sounding and limited), are small.

This suggests that azimuthal shear has little impact on

model performance. However, differences between the

full and no-sounding sets are much larger. This suggests

that the sounding yields a better predictor set than azi-

muthal shear. However, this should not be taken to mean

that azimuthal shear is generally unimportant. One con-

founding factor is that the sounding includes 212 predic-

tors, whereas azimuthal-shear statistics include only 20.

The correct conclusion is that for this particular prediction

task azimuthal shear can be safely ignored, which obviates

the need for expensive data-processing (section 2).

Contingency tables for the top four algorithms (all but

logistic regression), for both the full and limited pre-

dictor sets, are shown in Figs. 10–13. For both predictor

sets, the GBF has the lowest success ratio3 for supercells

but the highest success ratio for QLCS and disorganized

(Figs. 10 and 12). In other words, a key advantage of the

GBF is that its predictions of the minority classes are

FIG. 10. Row-normalized contingency tables for the four best models on the full predictor set. ‘‘Row normalized’’

means that the sum across each row in each table is 1.0. Thus, the number at row i and column j is the conditional

probability that the jth label is observed, given that the ith label is predicted. For example, if the number at row

‘‘QLCS’’ and column ‘‘Disorg’’ is 0.105, 10.5% of predicted QLCS storms are actually disorganized. The numbers

in parentheses are the standard deviation over all eight training/testing splits. Darker color indicates a higher

fraction of predictions for that true label.

3 The ‘‘success ratio’’ for class k is the fraction of predictions of

class k that are correct.
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more often correct. Also, for both predictor sets, the

GBF has the highest probability of detection4 for su-

percells (Figs. 11 and 13).

c. Model interpretation

Results of multipass permutation importance and

SFS are shown in Figs. 14–16. Ideally these figures

would show the top four models, but the nonlinear

SVM was too computationally expensive for model

interpretation. The nonlinear SVM takes much longer

to generate predictions, because this process involves a

nonlinear transformation of the predictors, which are

341-dimensional vectors. The loss function for permu-

tation importance and SFS is the negative Peirce score.5

We show only the top 10 predictors, for ease of viewing.

According to permutation importance (Fig. 14), per-

muting one predictor almost never causes a significant

decrease in performance. This makes sense, as there are

341 predictors and many are likely correlated. The two

predictors causing a significant decrease, both for the

linear SVM, are the microburst composite parameter

(MCP; Entremont et al. 2018) and sine of effective-layer

shear (ELS). As MCP increases, QLCS frequency in-

creases and disorganized frequency decreases (Fig. 15a),

possibly because QLCSs are intrinsically associated

with downbursts (section 1), of which microbursts are a

subcategory. As the sine6 of ELS increases, disorganized

frequency increases while QLCS frequency decreases

(Fig. 15b). This suggests that, when effective-layer shear

is more southerly, disorganized storms are more likely

and QLCSs are less likely. However, this is the weakest

relationship of the partial dependency plots in Fig. 15

and therefore should be given less credence.

FIG. 11. As in Fig. 10, but column normalized. ‘‘Column normalized’’ means that the sum over each column in

each table is 1.0. Thus, the number at row i and column j is the conditional probability that the ith label is predicted,

given that the jth label is observed. For example, if the number at row ‘‘QLCS’’ and column ‘‘Disorg’’ is 0.140,

14.0% of disorganized storms are predicted to be QLCS.

4 The ‘‘probability of detection’’ for class k is the fraction of

actual occurrences of class k that are correct.
5Wemultiply the Peirce score by21, since the loss functionmust

be negatively oriented (where lower is better) and Peirce score is

positively oriented.

6 The sine of a vector is (y 2 component)/magnitude, or the

fraction of its magnitude that points northward.
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More generally, permutation importance suggests that

shape predictors are the most important type. The top

10 predictors for each model include 6 or 7 shape

predictors, whereas shape predictors make up only 9

of 341 in the dataset. Supercell frequency increases

strongly with storm age, while QLCS frequency de-

creases strongly (Fig. 15c), likely because supercells

tend to be longer-lived while individual cells in a

QLCS do not. QLCS frequency increases strongly

with storm area (Fig. 15d), possibly because the tracking

algorithm struggles with QLCSs and often includes

multiple updraft cores in the same ‘‘storm cell.’’

Supercell frequency decreases with eccentricity, while

QLCS frequency increases (Fig. 15e), possibly be-

cause supercells tend to be more circular and those

in a QLCS tend to be more elongated. Last, QLCS

frequency increases with compactness (Fig. 15f), de-

fined as the object area/area of a circle with the same

perimeter. More compact objects tend to be simpler,

while less compact objects often have large intrusions

or protrusions, such as a hook echo in a supercell.

SFS (Fig. 16) tells a different story. Results for the

linear SVM have very wide confidence intervals (likely

because the model is unstable with few predictors), so

this discussion will focus on the GBF and random

forest. Common predictors between the two are

skewness of azimuthal shear, components of environ-

mental wind shear, and components of layer-averaged

storm-relative wind (SRW). Partial-dependence plots

for the GBF and random forest for these predictors are

not shown because the dependence of these predictors

across the domain was extremely flat (much flatter than

Fig. 15b), suggesting that there is almost no depen-

dence on these predictors. This is possibly because,

within a GBF or random forest, the same predictor

shows up in many different contexts (in different trees,

applied to different subsets of the data, with different

thresholds). The same predictor can have a different

effect in each context, and these effects often nearly

cancel out. As such, the increases or decreases in the

prediction frequencies across the domain are insignif-

icant and the PDPs yield inconclusive results. In light of

this, we do not offer an interpretation of the GBF and

random forest dependence on these predictors, as we

wish to avoid overzealous interpretation of the PDP

and predictor importance results.

SFS also indicates that echo top and hail statistics

(MESH and SHI) are more important for the random

FIG. 12. As in Fig. 10, but for the limited predictor set.
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forest, while column-maximum reflectivity and com-

pactness (a shape parameter) are more important for

the GBF. Since the GBF widely outperforms the

random forest, one might conclude that variables in

the GBF set but not in the random-forest set are

generally better predictors of storm mode. However,

we caution against this conclusion, since (i) according

to permutation importance, the top 10 predictors for

the GBF and random forest are much more similar;

(ii) PDPs for both models are inconclusive and do not

clearly show how the important predictors are im-

portant; and (iii) none of the interpretation methods

considered here allow for direct numerical compari-

son between different models. It is plausible that

another model could outperform the GBF with a

completely different set of top predictors. This last

point underscores the need, when interpreting ML

models, to look for general trends across models and

interpretation methods.

6. Summary and conclusions

We used several machine-learning algorithms to

classify thunderstorms into three convective modes:

supercell, part of a QLCS, and disorganized. Our pre-

dictors included composited radar data fromMYRORSS,

a proximity sounding from the RUC model, and storm

motion and shape derived from segmotion, a quasi-

operational storm-tracking algorithm. We compared

the five ML algorithms on four predictor sets, and the

best configuration was GBF with the full predictor set,

yielding an accuracy of 0.77 6 0.02 and Peirce score of

0.58 6 0.04.

We also employed three ML-interpretation methods.

First, according to permutation importance, shape pre-

dictors are vastly more important than radar or

sounding predictors. PDPs for the linear SVM suggest

that supercell frequency increases with storm age and

decreases with storm area, eccentricity, and com-

pactness. However, the relationships with storm area

are likely an artifact of the tracking algorithm merg-

ing several QLCS updraft cores into one object.

Second, according to SFS, environmental wind shear

and storm-relative wind are generally important pre-

dictors, while echo top, column-maximum reflectivity,

and hail statistics (MESH and SHI) are each impor-

tant for only a subset of ML models. SFS results vary

much more across models than permutation results,

FIG. 13. As in Fig. 11, but for the limited predictor set.
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and the top predictors for SFS contain a more even

mix of predictor types (radar, sounding, and shape),

rather than focusing heavily on shape predictors.

However, we consider the permutation results more

valid, because (i) permutation does not require

retraining, so results are based on the same models used

elsewhere in the paper; (ii) SFS results cannot easily be

cross-referenced with PDPs, because linear SVM is the

only model that generates PDPs with perceptibly non-

zero slopes but SFS results for the linear SVM have

prohibitively large error bars. Thus, for predictors

identified as important by SFS, it is difficult to assess

how they are important.

Automated classification of convective mode could

be useful in both operational forecasting and re-

search. In operations, it would save the human la-

bor involved in manually labeling storms and allow

meteorologists to focus more energy on forecast-

ing storm motion and attendant severe weather.

Also, since convective mode is correlated with storm

motion and severe weather (section 1), automated

classification could help with these problems as well.

An automated classification system could form an

important step in automated damage predictions or

systems that automatically adjust storm motion pre-

dictions in light of storm modes. An automated

classification system could also provide a possible

input to severe weather prediction systems (e.g.,

tornado or lightning forecasting systems). On the

research side, automated classification is most im-

portant for climatology analyses as an automated

system would allow for the generation of labels for

storms that were observed but not given a human

label. This would increase the range of storms that

are used to inform these analyses.

One disadvantage of our models is that they rely

on radar observations, so they can classify only

existing storms. The models also do not account for

convective initiation, so they cannot predict convec-

tive mode for future storms. However, this problem

could be addressed by training with simulated storms

from convection-allowing numerical models. Such

an ML model could potentially operate within the

Warn-on-Forecast system (WoF; Stensrud et al. 2009;

FIG. 14. The 10 most important predictors, according

to the multipass permutation method, for models

trained on the ‘‘full’’ dataset. Values are averaged over

1000 bootstrapping replicates, and error bars show 95%

confidence intervals. Radar predictors are in orange;

sounding predictors are in blue; shape predictors and

tracking-inferred (as opposed to sounding inferred)

storm motion are in green.
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Lawson et al. 2018; Skinner et al. 2018), which aims to

provide short-term guidance for thunderstorms and

severe weather.

In the near future we will apply convolutional neural

networks (CNN), a type of deep-learning model, to this

problem. The main advantage of CNNs is that they can

learn from gridded data, which would obviate the need

to compute radar and sounding statistics (we could

use raw storm-centered radar images and proximity

soundings, instead). This approach often leads to better

performance than hand-engineering predictors, be-

cause the hand-engineered predictors may exclude

important relationships. Also, CNNs allow the inter-

pretation outputs to be viewed in the same space as the

input grids (McGovern et al. 2019), which is often more

intuitive to humans.

FIG. 15. Partial-dependence plots for the linear SVM. Triangles show the predicted frequencies formissing data.All

predictors shown here are unitless, except for storm age (s) and area (m2).

APRIL 2020 J ERGENSEN ET AL . 555

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:13 PM UTC



Acknowledgments. The authors thankRich Thompson

and Bryan Smith for sharing their data with us and for

the many hours of work put into creating the labels for

each storm. We further thank the MYRORSS team

and Holly Obermeier for the radar data and addi-

tional labels, respectively. This material is based upon

work supported by the National Science Foundation

under Grant EAGER AGS 1802627. Funding was

also provided by the NOAA/Office of Oceanic and

Atmospheric Research under NOAA–University of

Oklahoma Cooperative Agreement NA16OAR4320115,

U.S. Department of Commerce. Most of the computing

for this project was performed at the University of

Oklahoma Supercomputing Center for Education and

Research (OSCER).

APPENDIX

Implementation Details

The best hyperparameters for each model were de-

termined by a grid search (Goodfellow et al. 2016, their

section 11.4.3). We used the cross-validation approach

described in section 2—except that we split data into

training, validation, and testing rather than just training

and testing. We chose the hyperparameters that yielded

the best Peirce score on the validation data (averaged

over all eight training/validation/testing splits). For all

hyperparameters not mentioned here, we used the de-

fault values in version 0.20 of the ‘‘scikit-learn’’ software

(Pedregosa et al. 2011). For the linear SVM, we used

the LinearSVC method (https://scikit-learn.org/stable/

modules/generated/sklearn.svm.LinearSVC.html) with c 5
4.6 in Eq. (4) and balanced class weights. Also, we solved

the primal optimization problem (rather than dual), as

primal optimization is better suited for datasets with

more examples than features. For the nonlinear SVM,

we used the SVCmethod (https://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVC.html) with c5 400

ands5 1.63 1025 in Eq. (5) and balanced class weights.

For logistic regression, we used the SGDClassifier method

(https://scikit-learn.org/stable/modules/generated/sklearn.

linear_model.SGDClassifier.html) with logarithmic loss,

tolerance of 0.001, 1000 epochs, and l1 5 0.1764 and

FIG. 16. As in Fig. 14, but for sequential forward

selection.
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l2 5 0.0036 in Eq. (3). The GBF and random forest were

implementedwithGradientBoostingClassifier (https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html) and RandomForestClassifier

(https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestClassifier.html), both with

250 trees and maximum depth of seven splits.
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